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Abstract. A solving formula of the two-dimensional Toda lattice is proved, making use of 
the direct method. This formula is a generalisation and unification of the Backlund 
transformation, the non-linear superposition formula and the Casorati determinant solu- 
tions. 

It is known that the two-dimensional Toda lattice has Casorati determinant solutions 
which are generalisations of the usual N-soliton solutions [l]. A linear Backlund 
transformation was found which generates an ( N +  1)-soliton solution from an N- 
soliton solution [2,3]. In this letter, we shall give a generalisation and unification of 
the above results, making use of the direct substitution means using Hirota's bilinear 
form [4]. 

We have the following bilinear form for the two-dimensional Toda lattice 

f n ( d x  a s f n )  - ( a x f n ) ( a s f n )  - V n + l f n - I  -fn2) = 0. (1) 
Now, given that gn is a solution of (l),  f:: ( m  = 0,1, . . . ) satisfy 

and 

We define 

f ",I 

f :+1 

f ::+l 

= In, n + 1, .  . . , n + ml(gn+, * * gn+,,,)-l (4) 

where the notation In,, n 2 , .  . . , nkl is as used in [4]. Using (2) and (3), we have 

axrn  - ( 5 )  
In, a . , n + m - 1, n + m + 11 + ( a x g n + m + l ) l n , .  , n + ml 

g n i ,  * g n + m - l g n + m + l  g n + l  * - * g n + m + ~  

I n - l , n + l ,  ..., n+ml+(a,gn)ln ,..., n+ml  a , r r =  - 
g n g n + ~  * * * g n + m  g n  * * * g n + m  
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r r =  
f t  . * I  f ; + m  

e .  . e .  

fn" I * *  f;+m 

where axf,"=f,"+l and asf,"=-f,"!l. 
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If we take m =0,  then we know f, are solutions of ( 1 )  [2]. 
If we take m = 1, then we get the non-linear superposition formula [5] 

wt = exp( D, )fX 
where D, is Hirota’s bilinear difference operator. 

The author would like to express his sincere thanks to Professor Ben-Yu Guo for 
encouragement and advice. 
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