Solving formula of the two-dimensional Toda lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L255
(http://iopscience.iop.org/0305-4470/22/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:58

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Solving formula of the two-dimensional Toda lattice 

Qi-Ming Liu<br>Department of Mathematics, Shanghai University of Science and Technology, Shanghai, People's Republic of China

Received 15 December 1988


#### Abstract

A solving formula of the two-dimensional Toda lattice is proved, making use of the direct method. This formula is a generalisation and unification of the Bäcklund transformation, the non-linear superposition formula and the Casorati determinant solutions.


It is known that the two-dimensional Toda lattice has Casorati determinant solutions which are generalisations of the usual $N$-soliton solutions [1]. A linear Bäcklund transformation was found which generates an $(N+1)$-soliton solution from an $N$ soliton solution [2,3]. In this letter, we shall give a generalisation and unification of the above results, making use of the direct substitution means using Hirota's bilinear form [4].

We have the following bilinear form for the two-dimensional Toda lattice

$$
\begin{equation*}
f_{n}\left(\partial_{x} \partial_{s} f_{n}\right)-\left(\partial_{x} f_{n}\right)\left(\partial_{s} f_{n}\right)-\left(f_{n+1} f_{n-1}-f_{n}^{2}\right)=0 . \tag{1}
\end{equation*}
$$

Now, given that $g_{n}$ is a solution of $(1), f_{n}^{m}(m=0,1, \ldots)$ satisfy

$$
\begin{equation*}
\partial_{x} f_{n}^{m}=\frac{g_{n}}{g_{n+1}} f_{n+1}^{m}+\frac{\partial_{x} g_{n+1}}{g_{n+1}} f_{n}^{m} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{s} f_{n}^{m}=-\frac{g_{n+1}}{g_{n}} f_{n-1}^{m}+\frac{\partial_{s} g_{n}}{g_{n}} f_{n}^{m} \tag{3}
\end{equation*}
$$

We define

$$
\begin{align*}
r_{n}^{m} & =\left|\begin{array}{cccc}
f_{n}^{0} & f_{n+1}^{0} & \cdots & f_{n+m}^{0} \\
f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m}^{1} \\
\vdots & \vdots & & \vdots \\
f_{n}^{m} & f_{n+1}^{m} & \cdots & f_{n+m}^{m}
\end{array}\right|\left(g_{n+1} \cdots g_{n+m}\right)^{-1} \\
& =|n, n+1, \ldots, n+m|\left(g_{n+1} \cdots g_{n+m}\right)^{-1} \tag{4}
\end{align*}
$$

where the notation $\left|n_{1}, n_{2}, \ldots, n_{k}\right|$ is as used in [4]. Using (2) and (3), we have
$\partial_{x} r_{n}^{m} \doteq \frac{|n, \ldots, n+m-1, n+m+1|}{g_{n+1} \ldots g_{n+m-1} g_{n+m+1}}+\frac{\left(\partial_{x} g_{n+m+1}\right)|n, \ldots, n+m|}{g_{n+1} \ldots g_{n+m+1}}$
$\partial_{s} r_{n}^{m}=-\frac{|n-1, n+1, \ldots, n+m|}{g_{n} g_{n+2} \ldots g_{n+m}}+\frac{\left(\partial_{s} g_{n}\right)|n, \ldots, n+m|}{g_{n} \ldots g_{n+m}}$

$$
\begin{align*}
\partial_{x} \partial_{s} r_{n}^{m}=\frac{1}{g_{n} \ldots} & g_{n+m}\left(\frac{g_{n}\left(\partial_{x} \partial_{s} g_{n}\right)-\left(\partial_{x} g_{n}\right)\left(\partial_{s} g_{n}\right)-g_{n+1} g_{n-1}}{g_{n}}|n, \ldots, n+m|\right. \\
& +\frac{g_{n+1} g_{n+m}}{g_{n+m+1}}|n-1, n+1, \ldots, n+m-1, n+m+1| \\
& \quad-\frac{g_{n+1}\left(\partial_{x} g_{n+m+1}\right)}{g_{n+m+1}}|n-1, n+1, \ldots, n+m| \\
& \left.+\frac{\left(\partial_{s} g_{n}\right)\left(\partial_{x} g_{n+m+1}\right)}{g_{n+m+1}}|n, \ldots, n+m|\right)  \tag{7}\\
\left(\partial_{x} r_{n}^{m}\right)\left(\partial_{s} r_{n}^{m}\right)= & \frac{|n, \ldots, n+m|}{g_{n} g_{n+1}^{2} \ldots g_{n+m}^{2} g_{n+m+1}}\left[|n, \ldots, n+m-1, n+m+1| g_{n+m}\left(\partial_{s} g_{n}\right)\right. \\
& +\left(\partial_{s} g_{n}\right)\left(\partial_{x} g_{n+m+1}\right)|n, \ldots, n+m| \\
& \left.-g_{n+1}\left(\partial_{x} g_{n+m+1}\right)|n-1, n+1, \ldots, n+m|\right] \\
& -\frac{|n-1, n+1, \ldots, n+m|}{g_{n} \ldots g_{n+m-1}} \frac{|n, \ldots, n+m-1, n+m+1|}{g_{n+2} \ldots g_{n+m+1}} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
r_{n}^{m}\left(\partial_{x} \partial_{s} r_{n}^{m}\right)- & \left(\partial_{x} r_{n}^{m}\right)\left(\partial_{s} r_{n}^{m}\right)-r_{n+1}^{m} r_{n-1}^{m}+r_{n}^{m} r_{n}^{m} \\
= & \left(\frac{|n, \ldots, n+m|}{g_{n} \ldots g_{n+m}}\right)^{2}\left[g_{n}\left(\partial_{x} \partial_{s} g_{n}\right)-\left(\partial_{x} g_{n}\right)\left(\partial_{s} g_{n}\right)-g_{n+1} g_{n-1}+g_{n}^{2}\right] \\
& +\frac{1}{g_{n+2} \ldots g_{n+m+1}} \frac{1}{g_{n} \ldots g_{n+m-1}} \\
& \times(|n, \ldots, n+m \| n-1, n+1, \ldots, n+m-1, n+m+1| \\
& -|n-1, n+1, \ldots, n+m \| n, \ldots, n+m-1, n+m+1| \\
& -|n+1, \ldots, n+m+1||n-1, \ldots, n+m-1|) \\
= & -\frac{1}{g_{n+2} \ldots g_{n+m+1}} \frac{1}{g_{n} \ldots g_{n+m-1}} \\
& \times\left|\frac{n-1|n| n+1, \ldots, n+m-1}{n-1 \mid n}\right| \\
= & 0 . \tag{9}
\end{align*}
$$

Thus $r_{n}^{m}(m=0,1, \ldots)$ are solutions of (1).
If we take $g_{n}=1$, then we get the Casorati determinant solution [1]

$$
r_{n}^{m}=\left|\begin{array}{ccc}
f_{n}^{0} & \cdots & f_{n+m}^{0} \\
\vdots & \ddots & \vdots \\
f_{n}^{m} & \cdots & f_{n+m}^{m}
\end{array}\right|
$$

where $\partial_{x} f_{n}^{m}=f_{n+1}^{m}$ and $\partial_{s} f_{n}^{m}=-f_{n-1}^{m}$.

If we take $m=0$, then we know $f_{n}$ are solutions of (1) [2].
If we take $m=1$, then we get the non-linear superposition formula [5]

$$
g_{n} r_{n}^{1}=\exp \left(D_{n}\right) f_{n}^{1} f_{n}^{0}
$$

where $D_{n}$ is Hirota's bilinear difference operator.
The author would like to express his sincere thanks to Professor Ben-Yu Guo for encouragement and advice.

## References

[1] Hirota R, Ito M and Kako F 1988 Prog. Theor. Phys. Suppl. 9442
[2] Saitoh N 1986 J. Phys. Soc. Japan 55435
[3] Yuasa F 1987 J. Phys. Soc. Japan 56423
[4] Freeman N C and Nimmo J J C 1983 Phys. Lett. 95A 1
[5] Hirota R and Satsuma 1978 J. Phys. Soc. Japan 451741

